
UNCLASSIFIED

AD NUMBER:

LIMITATION CHANGES

TO:

FROM:

AUTHORITY

THIS PAGE IS UNCLASSIFIED

AD1000012

Distribution authorized to
A = Approved For Public Release; 08/01/2016; Other requests shall
be referred to
controlling name Aldie, va, 44320

Distribution authorized to
A = Approved For Public Release; ; Other requests shall be referred
to
controlling name Aldie, va, 44320

 1

Current Developments in DETER Cybersecurity Testbed Technology

Terry Benzel1*, Bob Braden*, Ted Faber*, Jelena Mirkovic*,
Steve Schwab†, Karen Sollins§, and John Wroclawski*

*USC Information Sciences Institute, §MIT CSAIL, and †Sparta, Inc.
{tbenzel, braden, faber, mirkovic, jtw}@isi.edu, sollins@csail.mit.edu, schwab@sparta.com

1 Authors’ names in alphabetical order.

This material is based upon work supported by the Department of Homeland Security and the Space and Naval Warfare Systems Center, San
Diego, under contract No. N66001-07-C-2001, and by the National Science Foundation under Grant No. CNS-0751027. Any opinions, findings
and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the
Department of Homeland Security, the Space and Naval Warfare Systems Center, San Diego, or the National Science Foundation.

Abstract
From its inception in 2004, the DETER testbed

facility has provided effective, dedicated experimental
resources and expertise to a broad range of academic,
industrial and government researchers. Now, building
on knowledge gained, the DETER developers and
community are moving beyond the classic “testbed”
model and towards the creation and deployment of
fundamentally transformational cybersecurity research
methodologies. This paper discusses underlying
rationale, together with initial design and
implementation, of key technical concepts that drive
these transformations.

1. Introduction
The DETER cybersecurity testbed [3] is a dedicated
network testbed facility customized for cybersecurity
research. Initally deployed in 2004, DETER’s first
accomplishment was to provide effective,
professionally managed research infrastructure and a
shared user community for leading academic and
industrial cybersecurity researchers. With this first
objective largely met, and building on knowledge
gained, the DETER team now aims to identify,
understand, and enable new, fundamentally
transformative, rigorous and scientific methodologies
for cybersecurity research and development. This paper
describes key technical contributions of our current and
ongoing work in support of these goals.

Effective cybersecurity experiments are challenging to
today’s network testbeds for a number of reasons.
Among these are

• Scale. Experiments that involve complicated
composite behaviors, rare event detection or

emergent effects may need to be quite large and
complex to be accurate or indicative.

• Multi-party nature. Most interesting cybersecurity
experiments involve more than one logical or
physical party, due to the adversarial nature of the
problem as well as the distributed, decentralized
nature of the networked systems environment.

• Risk. Cybersecurity experiments by their
fundamental nature may involve significant risk if
not properly contained and controlled. At the same
time, these experiments may well require some
degree of interaction with the larger world to be
useful.

Meeting these challenges requires both
transformational advance in capability and
transformational advance in usability of the underlying
research infrastructure. A truly large experiment cannot
be carried out unless the researcher has access to a
truly large facility, but is also unlikely to be successful
if the researcher has to create a twenty thousand node
experiment description by hand. A potentially risky
experiment is likely to take place only if the
experimental platform can control the risk and all
concerned can be sure it is doing so. A multi-party
experiment will best be supported if the experiment
control framework explicitly accommodates multiple
parties and their concerns.

This paper describes a suite of significant advances to
today’s state of the testbed art, which taken together
move the concept of “testbed” from simple hardware
infrastructure to powerful and effective user-oriented
research support facility. Central to the paper is our
work in three synergistic areas:

First, our unique model for risky experiment
management enables researchers to carry out

 2

experiments that interact with their larger environment
while retaining both control and safety. The key benefit
of this model is that both experimenter and testbed
operator can proceed with assurance in carrying out a
wide and interesting range of heretofore unsupportable
experiments.

Second, our model and structure for experiment health
monitoring ensures that the underlying conditions and
invariants required for an experiment to be valid do in
fact hold. The key benefit of this structure is that
experiments receive active support from the facility to
ensure that they are proceeding as the designer
intended.

Third, our model and mechanism for dynamic
federation allows different testbed facilities to come
together on demand to support large-scale, complex,
heterogeneous, multi-party experiments. The key
benefit of this work is that experimenters ranging from
lone individuals to large institutions can bring together
rich coalitions of otherwise unavailable resources and
unconnected communities, all within our larger context
of complex, yet safely and reliably executed, risky
experiments.

When considered together, these capabilities allow the
cybersecurity researcher to carry out experiments that
are, simultaneously, more useful, more reliable, and
more complex, scalable, and realistic than anything
possible in today’s testbed environment.

To integrate these capabilities into a coherent and
easily accessible facility, we develop new abstractions
and functions for our experiment control toolkit,
known as SEER [1]. With these new capabilities in
place SEER will allow users of widely varying
sophistication to easily and effectively make use of the
next-generation experimental facilities we describe, for
purposes ranging from structured undergraduate
education to research experiments with order-of-
magnitude increases in complexity over those possible
today.

Our work is embodied in extensions to the DETER
testbed, a large Emulab[2]-derived facility sited at ISI
and UC Berkeley and targeted to support cyber-
security research. DETER’s existing, successful
capabilities and community, together with our long
involvement in its design, operation, and ongoing
development, provide crucial starting points and create
unique insights for the work described here.

2. Risky Experiment Management
Experimental cybersecurity research is often inherently
risky. An experiment may involve releasing live

malware code, operating a real botnet, or creating other
highly disruptive network conditions. Realistic
replication of such attacks is necessary to thoroughly
test detection and defense mechanisms.

The common response to this risk is to implement
strict isolation capabilities within a testbed, in an
attempt to ensure that no actual damage will be caused
by an experiment. Depending on the testbed,
containment mechanisms may range from complete
disconnection from the outside world to allowing
narrowly-controlled console access, and include disk
scrubbing before and after each experiment.

But such containment itself is highly limiting. A fully
contained experiment is hard to observe, hard to
establish, and hard to control, because it must be
completely isolated from its environment. Similarly,
full containment is hard to create with any assurance.
Sneak paths, equipment failures, and design mistakes
can render containment ineffective in myriad
unexpected ways.

Most importantly, full containment is not very useful.
An interesting and powerful class of experiments are
those that can interact with the larger environment (i.e.,
touch the Internet), but only in carefully controlled and
well understood ways. Thus, our work aims to move
from risky experiment containment to risky experiment
management as a strategy.

2.1 Risky Experiment Management: Concepts
Our approach to risky experiment management is
based on a very simple line of reasoning:

• If the behavior of an experiment is completely
unconstrained, the behavior of the host testbed
must be completely constraining, because it can
assume nothing about the experiment.

• But, if the behavior of the experiment is
constrained in some particular and well-chosen
way or ways, the behavior of the testbed can be
less constraining, because the combination of
experiment and testbed constraints together can
provide the required overall assurance of safe
behavior.

We call constraints on experiment behavior “T1
constraints”, while the corresponding constraints on
testbed behavior are called “T2 constraints”.

The composition of T1 and T2 constraints determines
the overall safety goal for the testbed. This testbed
safety goal is a fixed property, defined by the
operational and administrative parameters of a
particular testbed. While the safety goals of each

 3

testbed will have a common flavor of “no harm to
other users, the testbed or the Internet,” each testbed
may define notions of harm differently. Unacceptable
behaviors may depend on the testbed’s mission and the
policies at the hosting institutions. Testbed goals must
thus be explicitly defined in detail.

Three points should be noted. First, the separate
expression of T1 and T2 constraints in this model
represents a separation of concerns. This separation
allows experiment and testbed constraints to be framed
and expressed independently and in terms directly
meaningful to their audiences, experimenters and
testbed designers, respectively. Explicit experiment
(T1) constraints will allow an experimenter to reason
about which constraints are acceptable without
affecting the validity of the experiment. Similarly, a
testbed designer can reason about how to offer
different T2 constraint environments as well-known,
robust, and documented services, rather than having to
separately determine an operating procedure for each
new experiment.

Second, we note that the semantics of T1 and T2
constraint composition to obtain a desired overall
safety goal is interesting and rich. As an oversimplified
thought example, one might imagine a worm that can
only propagate by first contacting a “propagation
service” (T1 constraint), composed with a testbed
firewall (T2 constraint) that allows access to this
service only from within the testbed. The result is to
limit the worm’s propagation to the defined bounds of
the experiment.

Finally, T1 constraints might be enforced by (1)
explicit modification of malware to constrain its
behavior, (2) implicit constraints using encapsulation,
or (3) simply asserting a constrained behavior that the
network can verify.

Constraints are associated with each experiment within
a project and are continuously active. Because a given
experimental topology can be used for multiple
different “runs” [5], ideally constraints would be
generated and applied for each run. This however
would increase the burden for users whose runs exhibit
the same risky behavior, and it is also challenging
because we lack means to detect different “runs” from
within the testbed. Instead, we can associate constraints
with experiments, but will provide mechanisms for
users to modify these constraints while the experiment
is active.

The T1/T2 concept is only useful if we can ensure that
the selected T1 and T2 constraints are met. We must
require that all experiment constraints either be shown
to be “correct by construction” or be auditable by the

testbed. Our approach to auditing is to use the
Experiment Health Management infrastructure
described in Section 3 to implement monitoring tools
that verify each constraint throughout the experiment’s
lifetime. When experiment constraints are violated, the
Experiment Health Management infrastructure will
take corrective actions that may range from emailing
the user and testbed operators to terminating the
experiment.

2.2 Framework
Our current objectives are to 1) develop a set of T1/T2
constraint sets targeting both practical usefulness to the
community and advancement of our understanding of
the T1/T2 risk management model; 2) develop and
deploy necessary mechanisms and tools to implement
this risky experiment management model in the
DETER facility; and 3) evaluate the success of our
work through interactions with current DETER users
and others in the research and education community.

To accomplish these objectives we are developing a
risky experiment management framework. Our
framework addresses the following top-level concerns:
the experimenter’s research goals, testbed safety goals,
and experimenter privacy goals. We identify useful
points in each of these spaces, and develop candidate
sets of experiment (T1) and testbed (T2) constraints
that together provide these useful behaviors. Presently,
we have deployed implementations of a small number
of selected constraint sets to our early-adopter users.

Current testbeds assume one liberal set of user privacy
goals, but this is not realistic since, for example,
commercial users may have very different privacy
expectations than academic users. Some monitoring of
user actions and traffic by the testbed will be necessary
for several purposes: (1) to support health management
described in Section 3, (2) to ensure that user
constraints are implemented correctly, and (3) to
reduce testbed liability in case of malicious incidents.

To successfully support risky but controlled
experiments, our framework must capture user needs.
We have developed an initial experiment
categorization taxonomy based on the type of risky
behaviors necessary to an experiment, such as self-
propagating malware, high-volume traffic, etc. Our
initial taxonomy defines a small list of categories,
based on current experimental uses of DETER. We
expect this list to grow as work progresses, based on
user input.

Users are presently required to specify experiment
categorization, privacy goals and appropriate
experiment constraints at the time of experiment

 4

creation. Testbed constraints are generated based both
on the specification input by the user, and the testbed
safety requirements defined once by the testbed
operators. These constraints are put into action by the
testbed and our health management infrastructure
ensures that they are continuously enforced.

2.3 Implementation
Our ultimate goal is to develop a fine-grain model for
T1 and T2 constraints and a formal structure to reason
about their composition. In current work we adopt a
simpler approach, as a first practical step towards
deploying a useful risky experiment management
capability and as an assessment of the value of the
concept. We are developing a small selection of
matching T1/T2 constraint sets, where a) the T1
constraints are chosen to be appropriate and useful for
a particular class of experiment; b) the T2 constraints
are chosen to be implementable and verifiable in a
particular testbed environment, and c) the composition
of the chosen T1 and T2 constraints produces an
acceptable risk management result. We develop a
mechanism to allow researcher and testbed operator to
agree on particular sets, implement and enforce both
experiment and testbed constraints, and thus obtain the
level of risk management required for the particular
testbed environment.

We are developing a domain-specific language
language called REALM for specification and
manipulation of T1/T2 constraints as well as
operational safety objectives. Although it will be
possible for users to write REALM specifications
directly, our intent is that REALM be the output and
interchange language that a variety of tools use to
capture and manipulate constraint information.
REALM will be integrated with the SEER toolkit
described in Section 5, including guided dialogs for
users. The current version is also integrated with the
DETER facility’s “Create an Experiment” Web page.
User input is recorded through these interfaces and
translated into REALM specifications associated with
the experiment.

We regard each experiment as potentially risky until
proven otherwise. We initially address three types of
potentially risky behavior: (1) running malware, (2)
creating disruptive behavior, and (3) requiring
connectivity with the outside Internet. The first two
behaviors are intentionally risky, whereas the third
behavior may be risky by accident, if experimental
traffic with the outside is misconfigured and overloads
resources, provokes an external attack on the testbed or
creates liability.

To meet the needs of DETER’s current research
community, we initially address the following risks
from experiments: (1) malware traffic may infect
testbed hardware infrastructure needed for correct
operation, (2) experimental traffic of any sort may
overload control plane and shared hardware, (3)
disruptive actions may affect control plane and shared
hardware (4) in experiments with the outside
connectivity, experimental traffic sent to remote
machines may infect, overload or disrupt these
machines and remote networks, (5) in experiments
with the outside connectivity, experimental traffic may
provoke retribution toward the testbed (e.g., from the
Storm Network [44]) or create liability problems to the
testbed, (6) malware may stay resident on machines
after they are reclaimed by the testbed and may affect
future experiments by other users. Our framework is
evolvable so new threats will be incorporated as
research objectives dictate; we expect this list of risks
to grow as we proceed with our work.

The above risks are contained via experiment and
testbed constraints. Our initial list of experiment (T1)
constraints includes: (1) users limit scanning behavior
of self-propagating malware, (2) users limit targets of
disruptive actions, such as denial-of-service, to
addresses within experimental network, (3) users limit
their malware choice to well-known malware
contained in the DETER-supplied library, (4) users
limit experimental connectivity with the outside world
to a set of machines under their control, and to specific
protocols, (5) users limit the rate of traffic in their
experiments, (6) users limit experimental traffic to the
experimental network, (7) users implement signatures
or self-terminating behavior in malware they plan to
use. Our current prototype of risky experiment
management supports definition of constraints 1-6.

Our initial list of testbed (T2) constraints includes: (1)
isolation of experiments on the control plane using a
separate virtual LAN for each experiment, (2)
experimental traffic filtering and rate-limiting on the
control plane using hardware-specific filters at
switches to prevent disruption and overload of shared
infrastructure, (3) allowing outside connectivity only
via specialized nodes (“tunnel nodes”) that connect the
experimental network to the Internet, (4) controlling
experimental traffic contents and rate with the outside
Internet via firewall rules and the Bro intrusion
detection system [50] for deep packet inspection, both
installed on all paths to the Internet, (5) recording
traffic on tunnel nodes, recording of login activity on
experimental nodes, and association of traffic, logged
users, and experiment names for potential liability
reasons. Constraints 1 and 3 are implemented in our

 5

current prototype system, with others to be added in
the near future.

3. Experiment Health Management
Experiment health management addresses two broad
and increasingly important needs within experimental
cybersecurity research. First is the need to support
order of magnitude greater complexity in the creation
of realistic cybersecurity experiments. Second is the
need to bring greater rigor and scientific discipline to
the experimental research paradigm. We address these
needs through a research facility subsystem based on
two observations:

• The validity, accuracy, and usefulness of an
experiment depend critically on some set of
invariants or expectations identified by the
experiment’s creator being met.

• Any given experiment will have a number of other
behaviors that are not invariants, and cannot be
predicted by researchers, since experiments are
done to study unknown effects.

The rigor and scientific validity of an experiment is
greatly increased when the expectations and invariants
on which its validity depends are clearly understood by
the researcher and by others who wish to utilize or
build on the results of the experiment. A system that
makes these expectations explicit and ensures that they
are met during an experiment will contribute greatly to
the rigor of future experimental research.

This problem is complicated when experimental
complexity is increased, because the maintenance of
experimental invariants and expectations becomes
exponentially more difficult. Managing the complexity
of experiments that involve more than a handful of
elements demands system support to assist researchers
in understanding, documenting, and maintaining the
health of their experiments – the validity of the
experiment’s assumptions, expectations, and
invariants.

The challenge of experiment health monitoring and
management is to ensure that the underlying conditions
and invariants required for an experiment to be valid
are being met by the facility, and to aid the researcher
in detecting and modifying errors in experiment
design. Here “health” refers both to the behavior
desired by a researcher of his experiment and that
desired of the underlying testbed. Reasons for reduced
health include, but are not limited to, mistakes by the
experimenter, failures or faults of testbed resources,
misunderstandings the researcher has about the testbed,
unintended interactions between simultaneous

experiments, a security constraint being violated, and
so forth. The initial DETER system, as with many
similar testbed environments [2][7][12], provided little
or no support for either determining whether an
experiment is behaving as expected (its current health)
or for diagnosing failures and improving the situation
(improving its health). Our experiment health
management system addresses this missing function.

The experiment health problem is characterized by
three key properties. First, in contrast with the
“network management” problem of maintaining
functional behavior in an operating network, our
domain is the very different problem of supporting
security-related experimentation on a networking
testbed. The consequence is that potential range of
expected behaviors is very broad must be user-
supplied, because many cybersecurity experiments
require and intentionally create worst-case conditions
of overload, resource denial, host penetration and
unreliability.

Second, expectations of behavior will range from
extremely low level and concrete “invariants” valuable
for educational exercises (such as “node A is up”) to
composite, complex, perhaps statistical, and much
more abstract expectations (such as “service has been
denied”). An ideal experiment health system will
handle this wide range of invariants.

Finally, usability is critical. It must be possible for
users to capture desired invariants and health
enforcement actions with minimal overhead and
maximum clarity if the system is to meet its objectives.

Our goal is to support, with these properties,
experiment health maintenance in testbeds such as
DETER, and, by extension, to the federation of such
testbeds as described in Section 4. Our experiment
health system includes five elements, each with its own
research and implementation challenges. We outline
the elements here and expand on each in the following
sections. The system includes functions to support:

• Expectation capture. Concerns are the sources and
expression of data about experiment expectations.

• Data collection and monitoring. Concerns are
kinds and sources of data, reasons that the
information may be incomplete, and how to
provide controlled sharing between these tools and
health evaluators .

• Health evaluators. This includes observation of
collected data and its comparison against an
expectation to evaluate if the expectation is being
met.

 6

• Enforcement or repair. In its most basic form,
enforcement may simply involve repair or
replacement, but because expectations may be
quite abstract, there may be several diagnostic
steps involved in the process, and a selection of
repair or enforcement options.

• Support for sharing of information and expectation
data. This problem has two aspects: an information
plane to manage the availability and sharing of
operating information between experiments and
the underlying testbed, and a library for
cataloguing and accessing expectation templates,
resource definitions, data collection tools, current
performance tools and health evaluators.

3.1. Expectations
In operating networks, network management has the
goal of maintaining connectivity, distributing load,
setting up network configuration, and in general
supporting the network mission of delivering traffic
effectively between end nodes. This common mission
is well understood and agreed upon by all participants.
In shared testbeds, management needs to achieve a
more complex definition of a desired behavior. For a
particular user, desired behavior may be to deny
service or disrupt connectivity in the experimental
network, to test a new worm or to maintain some long-
lived service running reliably.

Users also have goals related to research privacy and
the usability they expect from the testbed, and these
goals differ from person to person. From the testbed
operator’s perspective, the desired behavior may be to
provide reliable service to users, to control risky
experiments, to federate with remote testbeds and to
protect the privacy of its users.

Because desired behaviors differ widely across
different experiments and depend on the nature of
experimentation and testbed maintenance, it is
impossible to identify universally appropriate
behaviors. Instead we require an explicit expression of
individual experiment expectations. The two key issues
we address are sources of expectations and the
language for codifying them.

Expectations may be identified in a variety of ways.
First, they could come directly from the experimenter.
This could be explicit, or inferred from the researcher's
behavior ("if he keeps fixing the DNS system when it
breaks, it must mean the DNS system should be
working"). Ideally a system could simply learn
invariants by looking at a working experiment, but the
problem lies in recognizing the non-invariants - things

that are unimportant or should change from experiment
to experiment.

Our initial implementation requires explicit expression
of expectations by experimenters and testbed system
managers, with minor automation from the testbed. We
include design hooks for the system to use additional
expectation capture methods in the future. We
implement an expectation capture language that
specifies a set of conditions under which the
expectation will be evaluated, a subject for the
evaluation, a health evaluator, and a set of responses to
the evaluation. Together these items capture an
expectation and its enforcement and response methods.

A simple example is to expect a server to be running,
verify this by sending a ping once a minute and reboot
the server if the ping fails. In a more sophisticated
example, the expectation may be of a certain level of
traffic among a set of gossiping nodes. The traffic level
might be checked every minute and if it is below a
threshold, each node might be told to increment by one
the number of nodes it contacts during a gossiping
episode. A security expectation might lead to allowing
a traffic flow from the Internet into an experiment
(response), if a particular experiment is running, no
other experiments are running, and the traffic is all
addressed to a particular port (conditions).

We identify a long list of requirements for
expressiveness in invariant capture, including but not
limited to: time, location, service quality evaluation;
verification of particular actions, continuous states,
privacy; higher-level concepts such as restriction on
code propagation; dependencies among expectations,
coupling of expectations to actions; and composition
into higher level expectations. To create the capture
language, we build on past work such as Ponder [30]
and Tcl expect [28], with a domain-specific user-
friendly and higher-level syntax, for easier use.

We briefly discuss key issues with respect to the
expectation subjects – things about which an
expectation may be expressed. These subjects range
from simple base level instances, such as a link or
node, to more complex elements such as an entire
Gnutella-like P2P system. We differentiate between the
type of the subject (e.g., link), and the instantiation of
it (e.g., link between A and B). The choice of health
evaluation tools and repair functions then depends both
on the type and the instantiation of a given expectation,
and may lead to decomposition of that expectation
evaluation into more primitive evaluations. To capture
these nuances we provide parameterized templates for
many common expectations in our library, for users to
instantiate.

 7

3.2. Data collection tools
To implement health evaluation the system provides
monitoring and data collection about what is happening
in the testbed as a whole as well as in each particular
experiment. There are three key sources of such data:
(1) static data such as node allocation to a particular
experiment, etc. (2) data collected routinely in all
experiments and by the facility itself, such as packet
tracing, node liveness, etc., and (3) explicit data
collection requested by an experimenter or the testbed
management, in context of a specific expectation’s
evaluation.

There are several challenges to data collection. First,
because of scale and system unreliability, available
data may be incomplete. Second, the desired
information may not be directly measurable, but must
be inferred from other measurements that can be
gathered directly. Finally, in light of security
expectations that relate to privacy, some information
may not be accessible to a particular experimenter or
portion of an experiment. Either an experiment or the
testbed system may withhold information from the
other. As an initial step towards meeting these
challenges, we provide a base set of data collection
tools in our library, which will be extensible by
researchers.

3.3. Health evaluation
The job of health evaluation is to determine whether an
expectation – in our framing, the static or dynamic
behavior of a expectation’s subject – meets specified
health criteria. There are two aspects to evaluating the
health of a subject. The first is to select the particular
behaviors of the subject, such as link bandwidth, jitter
or loss rate, that are to be evaluated. This will in turn
determine one or more tools for evaluating the
behavior. The second is to determine the health of that
subject by comparing observed and expected behavior.
As a simple example, the experiment health may
require either a high or a low loss rate, depending on
the user’s desires.

In the case of a more complex subject, with a rich set
of possible behaviors and the potential for a complex
user definition of health, we break the problem down
with a composite evaluation. One approach is to define
the more complex behavior as a composition of a set of
simpler behaviors. Then when asked to evaluate the
health of the subject, the target behavior is computed
as a composition of those simpler behaviors and the
result is evaluated for its health. In this approach the
composite behavior is completely synthesized and then
a single health evaluation is performed.

In an alternate approach, we define the health
evaluation of a complex subject as the composition of
the health evaluations of simpler components. In this
case, the system evaluates the behavior and health of
each simpler component and then composes the results
into a single health evaluation. Because each approach
is preferable in different circumstances, we define both
approaches and allow the user to reason about
tradeoffs.

3.4. Enforcement and repair
Enforcement and repair are two sides of the same coin.
Enforcement provides some level of guarantee that an
expectation continues to be met. Thus, for example, in
order to enforce that any reproducing malware does not
overload resources, the testbed could rate limit the
traffic from experimental nodes. Enforcement is likely
to require frequent periodic evaluation of expectations.
In contrast, repair uses similar mechanisms but aims to
correct a detected failure. Since failures are not very
frequent, evaluation of expectations that involve repair
actions may occur on demand or periodically but
infrequently.

A third alternative is to detect an unhealthy situation,
but take no action to address it other than notifying the
user. This may be necessary in cases when there is no
specified repair action, or the repair itself has failed.
For example if an experiment expects 50 nodes, is
assigned the only 50 nodes available and one fails, the
only option is to halt the experiment. On the other
hand, if some nodes were optional and some critical,
the experiment might continue as long as a critical
node did not fail.

We allow the user to specify each of these cases, and
the desired enforcement or repair action, using our
expectation language. We provide tools for common
enforcement and repair operations in our library for
easy use. Additional language constructs support
sophisticated users that wish to provide enforcement or
repair actions that are specialized to the nature of their
experiment.

3.5. Sharing
To monitor and enforce expectations, a health system
must depend on significant amounts of information
about experiment performance. Because DETER and
similar testbeds utilize reusable and shared resources,
this information must be collected and accessible from
several contexts simultaneously. Conversely, the same
information may be valuable to more than one
monitoring tool either simultaneously or at different

 8

times. Each of these situations leads to information
sharing.

For example, it may be important to collect packet
traces in an experiment for a variety of different uses.
Monitoring tools used on behalf of the experimenter
may depend on these traces to verify correct
experiment behavior, while the underlying testbed
system may simultaneously use such traffic
information to determine the health of the complete set
of resources it is managing. At the same time, these
traffic traces can provide an audit trail if an experiment
creates a security risk for the testbed, e.g., by running a
worm that escapes into the Internet. Other contexts for
reuse of the same information are possible.

Thus information should be collected once and
managed effectively to allow for multiple uses. This
requires a common information substrate or
information plane, with well-defined access rules and
contexts. Information collection and access must be
designed to reflect the security and privacy
expectations that are critical for the whole experiment
health management. In this area our development effort
draws on and is synergistic with other efforts with this
specific focus, particularly the Knowledge Plane
activity described in [18].

4. Dynamic Federation
Federation is the task of creating, on demand, a multi-
testbed structure to support a single large experiment.
The goal of federation is to subdivide and embed a
single experiment across multiple testbeds, in a way
that meets the objectives, requirements and constraints
of both the researcher and the testbed operators.
Reasons to federate experiments include scale and
realism, access to heterogeneous testbed capabilities,
integration of multiple research communities, and
information hiding. Of particular interest for large
cybersecurity experiments is simultaneously creating
federated environments while addressing risky
experiment management and health management goals
based on the mechanisms of Sections 2 and 3.

The DETER federation architecture (DFA)
implements federation over Emulab-style testbeds. The
architecture breaks the federation task into three steps:
1) decomposing the experiment to be federated into
sub-experiments to be assigned to individual testbeds;
2) embedding the sub-experiments into individual
testbeds and building the necessary connections
between testbeds, and 3) operating and supporting the
federated experiment.

The architecture recognizes that within the three tasks
some functions are dependent on the requirements and

characteristics of the particular experiment to be
federated, and thus require domain-specific knowledge.
Other functions are common across experiments, and
can be modularized and generalized. The DFA
accommodates this by including 1) elements and
interfaces to support common functions; 2) system
interfaces and framework for a “plug-in” extensible
implementation of domain-specific functions; and 3)
an ontology and language to express information used
to drive the federation process. Figure 1 gives an
overview of the architecture. Key elements are
described in the following text.

4.1. Sub-Experiment Decomposition
Intelligent decomposition of a single large experiment
into per-testbed sub-experiments must of necessity
consider two factors: heterogeneity within the
experiment in one or more dimensions, and testbed
capabilities along one or more axes. Examples of
experiment heterogeneity that may influence
decomposition include

• Topology and bandwidth requirements – e.g.
embedding densely connected regions of the
experiment within a single testbed.

• Specific hardware or software requirements within
some portion of the experiment graph.

• Security constraints – in our model, specific T1
constraints that can be offered over some portion
of an experiment, and/or specific T2 constraints
required from the testbed hosting some portion of
the experiment.

• Information hiding – particularly in a composite
experiment, such as a red-team/blue-team
scenario.

Because the factors that should influence the
decomposition of a particular experiment are known
only to the experimenter, decomposition is a domain
specific function. Thus, the DFA provides for an
extensible set of decompositors, together with a well-

 9

defined environment for their implementation. DFA
provides common information to decompositors using
the ontology described in Section 4.3. Inputs or
knowledge specific to a single decompositor may be
provided by a custom interface, or simply programmed
into the decompositor’s implementation. As a
particularly simple case, the decomposition function
can be performed without involvement of higher level
software by a human writing directly in the CEDL
language described below.

4.2. Canonical Experiment Description
Language and Federator

Canonical experiment description language (CEDL) is
the output language for all decompositors in the DFA.
It can be thought of as an “assembly language” for
federated experiments – a common, low-level format
that many different tools can generate. CEDL is an
extension of Emulab’s current NS2-based experiment
description language. CEDL describes an experiment
as an interconnected topology of nodes, together with a
number of annotations that guide the embedding of an
experiment into its federation of testbeds. Annotations
include such information as the target testbed for
placing a particular node, and whether a node is critical
to the experiment or can be ignored if it cannot be
embedded successfully.

An experiment’s CEDL description forms the input to
the federator. The federator is responsible for
embedding the sub-experiments within each federated
testbed, after creating the additional hidden nodes and
links necessary to interconnect regions of the
experiment. This task is essentially mechanical, but
requires parsing and understanding the CEDL
description sufficiently to forward experiment
information, security configuration, and user
credentials to testbeds, establish the shared experiment
support environment of Section 4.4, handle error
conditions that may arise, and similar functions.

4.3. Federation Resource Description
Ontology

Elements of the DETER federation architecture are
bound together by an ontology of information needed
to carry out the federation task. This ontology, and its
expression in a concrete format, allow the different
principals to communicate requirements, needs, and
constraints to each other. Statements and requests
expressed in this ontology are communicated between
testbeds, the DFA federator, and decompositors acting
on behalf of potential users, to implement
decomposition and embedding functions. We briefly

outline the structure and scope of the proposed
ontology.

The form of expression is attribute/value assertions
potentially attested to by principals or outsiders: (X
asserts that Y is/has Z). Some example attributes,
values, and meanings are shown in the table.

Multiple attribute assertions can be assembled into
descriptions or requests. The operators are grouping,
conjunction, and inclusive and exclusive disjunction.

(DETER asserts that its access policy is X.509
certificate AND

 (DETER asserts that it has 100 nodes AND DETER
asserts that it has 1Gb/s cross-connect) XOR

 (DETER asserts that it has 1000 nodes AND DETER
asserts that it has 1000Mb/s cross-connect))

The ontology’s domain of discourse is testbeds,
experimenters, resources, sub-experiments, and
attesters. Examples of representable concepts within
the ontology are given below, for flavor. Of particular
interest is the ontology’s ability and requirement to
represent our T1/T2 risky experiment management
constraints. It follows that the ontology will evolve in
this respect as our work in that area proceeds.

The simple semantic model of this ontology is intended
to allow the use of a variety of existing representation
and constraint matching tools to facilitate reasoning
about the federation problem. Our research lies in what
must be said and how to interpret it, not in the form of
the ontology.

4.4. Scaling the Experiment Support
Environment

Centralized testbeds such as Emulab have historically
provided a rich experiment support environment of
functions intended to simplify the job of the researcher
by providing useful building-block capabilities.
Emulab’s experiment support environment includes a
shared filesystem, an event system, a simple error
management system, and several related functions.
When moving to a decentralized, federated
environment, the scalability and appropriateness of

Attribute Value Meaning

User: PGP_Key (keyid,
server) User PGP ID

Testbed:
Access_Policy

X.509,
Kerberos

Acceptable user
authentications

Sub_Experiment:
T1_Imposed String

T1 constraint set
exp. meets

 10

these functions must be revisited. Several outcomes are
possible.

The function may be fully scalable, perhaps with a new
implementation, as it is commonly used. The function
may be scalable as defined, but not as commonly used,
leading to the need for careful re-thinking. Or, the
function may not be scalable at all, leading to its
removal from the federated environment, and possible
replacement with a more scalable alternative
capability.

Different Emulab support functions exhibit each of
these properties. As examples,

• The use of a shared filesystem is reasonably
scalable in concept, if not always in
implementation. A number of researchers have
proposed approaches to highly scalable distributed
filesystems that could be adopted.

• The Emulab event system is scalable in concept,
because it does not define either tight real-time
semantics or assured ordering semantics.
However, in practice it exhibits both of these
properties in a local testbed, and they have come
to be relied on by some experimenters. In a
federated environment, two separate mechanisms
may be appropriate: one that provides tight real-
time constraints on single event delivery, to
coordinate the actions of different elements across
a highly scaled experiment, and one that provides
explicit ordering semantics [42][43] to support
complex dependency graphs in highly structured
experiments.

In general, the design of an experiment support
environment for large federated facilities must
carefully and explicitly consider tradeoffs between
scalability, robustness, implementability, and
usefulness to the experimenter. In our implementation
of DFA within DETER, each of the existing Emulab
services is analyzed for suitability to the federated
environment, and updated or replaced if necessary.

5. SEER as Integration Platform and
Usability Framework

The DETER testbed’s SEER system [1] is an
extensible framework for experiment support and
control. We rely on SEER to provide broad
infrastructural support for our new capabilities of
experiment health maintenance, risky experiment
management, and federation.2 It is important to

2 We note that it is not necessary to use SEER to access these
capabilities; each is also accessible through new low-level system

recognize that without significant advances in this
regard, the increased experiment complexity enabled
by our other advances could potentially reduce testbed
usability. For this reason, our goal is to leapfrog
existing usability models, creating new experiment
creation and control interfaces that directly address this
increased complexity. Further, it is useful to address
separately the needs of sophisticated experimenters,
who frequently must operate at low level and shape
their own tools, and for more casual users, who need
simple access to complex function.

SEER is structured as a GUI that communicates with a
master controller agent (CA) for each experiment. In
turn, the controller agent communicates with and
controls a SEER agent running on each experimental
node. The GUI and CA provide the experimenter with
access to SEER capabilities through an XML-RPC
interface, which allows for interaction with the
controller by other programs. For example, even now
an experimenter can interact with the controller
through a command-line interface. The controller agent
contains logic in the form of execution scripts to
support potential experimenter requests, as well as the
event state necessary to monitor and manage those
requests. The controller agent communicates directly
with the local node agents with requests or commands
for local operations and information. This structure
provides a framework to support the major functional
developments described in this paper. We briefly
consider each of these in the context of the SEER agent
system.

As described in Section 4, federation of testbeds in
support of large experiments is achieved by
decomposition of the experiment into partitions, each
of which is run on one of the federants under its local
control. We reflect that same decomposition in the
SEER experiment control, by splitting and distributed
the responsibilities of the controller. Under federation,
we extend SEER to provide a single experiment
controller, a set of federant controllers, and the
requisite node agent for each node. In this case, the
experiment controller provides high-level oversight
and partitioning of the SEER activities, and is capable
of partitioning inferior responsibilities to the federant
controllers, which in turn interact with the local node
agents. The experiment controller operates using an
experiment-wide event stream, while the individual
federant controllers each have their own, partitioned,
event state and sequence of events. Notice that this is
an example of a situation in which the invoker of an

APIs. It is both possible and expected that additional higher level
integration tools will be developed in the future.

 11

XML-RPC on a (federant) controller will be another
controller, not the GUI – a new capability that is
naturally supported by the modular SEER architecture.
With further extensions expected in the longer run, we
plan for other situations in which controllers will be
invoked by something other than the GUI.

In the case of risky experiment management the
challenge is slightly different, but is equally
accommodated with an extension to the underlying
agent system. The problem for risky experiments is
that the interaction with the outside Internet is not
based in a “node” of the experiment in the same sense
as the traffic and actions of a completely internal
experiment. Therefore, in order to manage and monitor
that interaction, a T2 agent is used to manage the
testbed’s constraint mechanisms. In terms of overall
control of the experiment, this agent is a peer of the
node agents. Concretely, this agent is hosted on the
same node as the federant’s controller. The job of this
T2 agent is qualitatively different than that of the node
agents because it may have less control over what
actually happens, but may require more control over
the flow or distribution of information from its “target”
to the other components of the experiment. By
isolating that control in a separate agent, we increase
our ability to make it trustworthy, independently of the
other components of the SEER environment.

Our experiment health management architecture maps
directly onto the appropriate SEER agent infrastructure
for each experiment. By piggy-backing experiment
health management monitoring agents onto the existing
SEER agent structure, we guarantee that the
appropriate data collection, behavior evaluation, health
determination, and responses will be managed along
exactly the same paths of control as those of the
experiment itself. This also allows for policy controls,
such as those that may be necessary in the information
plane component of the health management system, to
follow the structure cleanly, giving each node agent,
federant controller, or T2 agent local control over local
access. Finally, we extend the SEER GUI itself to
provide access to these new capabilities in intuitive
ways.

6. Related Work
Our experiment health work is an extension and
customization of knowledge plane [18] ideas to
network testbeds. Much recent work in this area has
concentrated on the sub-problem of supporting an
information plane. Two approaches are seen. With
Sophia [34] and the work of Loo et al. [35][36][37],
the objective is to provide an all-purpose information
plane, in which all information is shared. From our

perspective these do not provide the ability to control
or limit access to information based on security and
privacy policies. The second is more specialized
information planes, including iPlane [38], which
provides path behaviors for managing peer-to-peer
overlays, the Lord of the Links project [39] which
provides comprehensive network topology
information, and the 4D proposal [40] for route
computation and distribution. In contrast we propose a
general-purpose information plane for sharing, but one
that permits control or limitation of access to
information for policy (proprietary or security) reasons.

There is vast work in network management; a field that
is related to our health management effort. The main
distinction between network management and our
work is that testbed experiments lack generally agreed-
upon correctness or performance goals. Namely, what
may be regarded as poor performance in one
experiment, such as frequent link failures, may be a
desired effect in another experiment. Another
difference lies in the granularity at which management
is done: networks are managed at high granularity of
network elements and links, while experiments also
need to be managed at low granularity of user actions.
Thus, we expect to reuse existing work in network
management for coarse-granularity management of the
testbed and the experiments, but we extend this field
with our fine-granularity management functionalities.

Network monitoring has received significant attention
with the advent of grid and cloud computing (to
mention just a few publications [14][15][16][31]). We
plan to reuse existing monitoring approaches and tools
for our health management. The novelty of our work
lies in interpretation of the outputs of those tools, and
in orchestration of their activity.

Ballani and Francis propose Complexity Oblivious
Network Management [17], in which the management
interface abstracts much of the underlying
implementation complexity, facilitating more effective
high-level management. We expect to leverage and
extend this work to simplify our management tasks.

There are a number of tools for distributed application
management on PlanetLab [12], such as Plush and
Nebula [4], PlMan [19], Stork [20], pShell [21],
Planetlab Application Manager [22], parallel open SSH
tools [23], plDist [24], Nixes [25], PLDeploy [26] and
vxargs [27]. With the exception of Plush and Nebula,
these tools are all low-level monitoring or management
tools that are engaged manually at the setup time of a
PlanetLab experiment. They enable parallel execution
of multiple tasks, or monitor nodes for liveness,
connectivity, and state, and present summarized
information to a user. Plush [4] is a toolkit for

 12

distributed application configuration, management and
visualization. Plush enables users to specify tasks in
XML format, then executes them invoking low-level
process, file and resource monitoring to detect failures.
Plush also provides synchronization primitives and
performs resource acquisition and reallocation as
needed. The primary distinction between Plush and our
proposed health monitoring is that Plush manages for
known performance goals (connectivity, process
liveness, etc.) that are suitable for continuously running
applications, while we additionally manage for
customizable performance goals that are suitable for
widely varying testbed experiments. Our management
thus includes the notion of “expected performance”
and covers a wider range of behaviors than Plush.

Emulab’s Experimenters Workbench [5] contains
support for experiment versioning, cloning via a
template, and archiving. These capabilities support pre-
packaged experiments, and are complementary to the
capabilities provided by SEER. Emulab’s workbench
does not, however, provide any support for experiment
creation and correctness checking, which is the main
focus of our health management infrastructure.

In the area of expectation or policy specification
languages, we mention two extremes. XACML [29] is
declarative and serves as a policy capture framework,
expecting enforcement through other means. From our
perspective, policy declarations are only a small part of
our challenge. In contrast, Ponder [30] [41] is an object
based language for declaring not only security and
management policies, but time, state, and composite
conditions under which the policies should be
evaluated, sets of subjects to be evaluated, sets of
targets over which some action might be taken, and the
actions themselves. All of these can be individuals,
composites, or abstractions. In fact, Ponder policies are
also objects and can themselves be the subjects of
policies. Simpler than Ponder, Tcl Expect [28] is a
scripting environment whose syntax enables
specification of control flows that depend on controlled
program outputs, thus automating system testing. As
discussed earlier, our expectation language
incorporates such capabilities, with the specific
objective of making expectation capture easily
accessible, usable, and understandable by a broad set
of differently skilled researchers. We find it useful to
reuse features of Tcl Expect and Ponder, wrapping
them in more user-friendly syntax and/or higher level
language constructs.

Though there has been much work on federating
databases or constructing meta-computers, federating
testbeds is a relatively recent area of research. Emulab-
to-Emulab federation remains a topic of ongoing

development [51][52][53], though much of this is the
foundational work of interconnecting the testbeds at
the operational level. Our work extends this to enable
experiments that configure the federated environment
based on policy considerations such as the risk level of
the experiment, and to include distributed monitoring
capability. The PlanetLab research community has also
begun to federate instantiations of PlanetLab [54][55].
Much of this work centers on splitting a centralized
authority between a few entities; our work is more
focused on federation without a central authority. The
Grid community provides both tools [56] and standards
[57][58][59][60] that are useful in addressing several
aspects of federation. Primarily, Grid tools simplify
exchange of authentication requirements and trust
requirements, which are required in a practical
federation system but are not central to our research.
Adopting these standards and tools frees us to focus on
the new aspects of our problem domain.

Honeynets [32] address a problem related to our risky
experiment control. Honeynets must allow some
malware interaction with the outside Internet, but
control it so that the honeynet does not participate in
attacks on others [33]. This resembles our goal of
allowing experiments to communicate safely with the
Internet. However our problem is more constrained
since testbed researchers often have some knowledge
of the malware they want to study and can describe
some aspects of its behavior, while honeynets must
support unknown malware and live attackers. Despite
these distinctions we find it useful to reuse honeynet
practices for our testbed constraint implementation.

7. Conclusion
From its inception in 2004, the DETER testbed facility
and community have provided effective, dedicated
experimental resources and expertise to a broad range
of academic, industrial and government researchers.
Now, building on knowledge gained, the DETER
developers and community are moving beyond the
classic “testbed” model and towards the creation and
deployment of fundamentally transformational
cybersecurity research methodologies. The risky
experiment management, experiment health support,
and federation technologies described in this paper
simultaneously enable order of magnitude increases in
both scientific rigor and realism for such research,
leading to dramatic increases in researcher productivity
and quality of results. Further, these DETER advances
serve as an incubator for similar capabilities in projects
such as GENI and the proposed National Cyber Range,
catalyzing dramatic and broad improvement in the
nation’s cyber research capability.

 13

8. References
[1] S. Schwab, B. Wilson, C. Ko, and A. Hussain, “SEER: A
Security Experimentation EnviRonment for DETER”, In
Proceedings of the DETER Community Workshop on Cyber
Security Experimentation and Test, August 2007.

[2] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb and A. Joglekar, “ An
Integrated Experimental Environment for Distributed
Systems and Networks”, Proceedings of the Fifth
Symposium on Operating Systems Design and
Implementation, USENIX, Boston, MA, 2002.

[3] T. Benzel, R. Braden, D. Kim, B. C. Neuman, A. Joseph,
K. Sklower, Ron Ostrenga and S. Schwab, “Experience with
DETER: A Testbed for Security Research,” In Proceedings
of Tridentcom (International Conference on Testbeds and
Research Infrastructures for the Development of Networks &
Communities), March 2006.

[4] J. Albrecht, C. Tuttle, A. C. Snoeren, and A. Vahdat.
“PlanetLab Application Management Using Plush,” ACM
Operating Systems Review (SIGOPS-OSR), 40(1), January
2006.

[5] E. Eide, L. Stoller, and J. Lepreau, “An Experimentation
Workbench for Replayable Networking Research”,
Proceedings of NSDI 2007.

[6] A. Bavier, N. Feamster, M. Huang, L. Peterson and J.
Rexford, “In VINI Veritas: Realistic and Controlled Network
Experimentation,” Proceedings of ACM SIGCOMM 2006.

[7] WAIL testbed, http://www.schooner.wail.wisc.edu/

[8] TCPreplay, http://tcpreplay.synfin.net/trac/

[9] Harpoon traffic generator,
http://pages.cs.wisc.edu/~jsommers/harpoon/

[10] J. Mirkovic, A. Hussain, B. Wilson, S. Fahmy, P.
Reiher, R. Thomas, W. Yao, and S. Schwab, “Towards User-
Centric Metrics for Denial-Of-Service Measurement,”
Proceedings of the Workshop on Experimental Computer
Science, June 2007

[11] TCPdump, http://www.tcpdump.org

[12] L. Peterson, A. Bavier, M. Fiuczynski, and S. Muir,
“Experiences Building PlanetLab”, Proceedings of Operating
Systems Design and Implementation Symposium (OSDI
‘06), November 2006

[13] T. Faber, J. Wroclawski, and K. Lahey, “A DETER
Federation Architecture”, In Proceedings of the DETER
Community Workshop on Cyber Security Experimentation
and Test, August 2007.

[14] I. C .Legrand, H. B. Newman, R. Voicu, C. Cirstoiu, C.
Grigoras, M. Toarta, C. Dobre “MonALISA: An Agent
based, Dynamic Service System to Monitor, Control and
Optimize Grid based Applications, Proceedings of CHEP
2004.

[15] A. W. Cooke et al. “The Relational Grid Monitoring
Architecture: Mediating Information about the Grid” Journal
of Grid Computing, vol 2 no 4 December 2004.

[16] A. J. Wilson et al. “Information and Monitoring
Services within a Grid Environment,” Proceedings of CHEP
2004.

[17] H. Ballani and P. Francis, “CONMan: A Step Towards
Network Manageability”, Proceedings of ACM SIGCOMM
2007.

[18] D. D. Clark, C. Partridge, J. C. Ramming, and J. T.
Wroclawski, “A Knowledge Plane for the Internet,” in
Proceedings of ACM SIGCOMM, 2003.

[19] T. Isdal, T. Anderson, A. Krishnamurthy and E.
Lazowska, “PlanetLab Experiment Manager”,
http://www.cs.washington.edu/research/networking/cplane/

[20] University of Arizona, “Stork”,
http://www.cs.arizona.edu/stork/

[21] McGill University, “pShell”,
http://www.cs.mcgill.ca/~anrl/projects/pShell/index.php

[22] Intel Research Berkeley, “PlanetLab Application
Manager”, http://appmanager.berkeley.intelresearch.net/

[23] Intel Research Berkeley, “Parallel open ssh tools”,
http://www.theether.org/pssh/

[24] M. Georg, University of Washington at St Louis,
“plDist”, http://www.arl.wustl.edu/~mgeorg/plDist.html

[25] AquaLab, Northwestern University, “Nixes”,
http://www.aqualab.cs.northwestern.edu/nixes.html

[26] Intel Oregon, “PLDeploy”, http://psepr.org/tools/

[27] Y. Mao, University of Pennsylvania, “vxargs: Running
arbitrary commands with explicit parallelism, visualization
and redirection”,
http://dharma.cis.upenn.edu/planetlab/vxargs/

[28] D. Libes, “expect: Curing those Uncontrollable Fits of
Interaction”, Proceedings of the Summer 1990 USENIX
Conference, Anaheim, CA, June 11-15, 1990.

[29] OASIS, “OASIS extensible Access Control Markup
Language”, http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=xacml

[30] N. Damianou, N.. Dulay, E. Lupu, M. Sloman, “The
Ponder policy specification language”, Proceedings of
Workshop on Policies for Distributed Systems and Networks,
2001.

[31] Y. Mao, H. Jamjoom, S. Tao, J. M. Smith,
“NetworkMD: Topology Inference and Failure Diagnosis in
the Last Mile”, Proceedings of IMC 2007.

[32] The Honeynet Project, Web page,
http://www.honeynet.org

[33] The Honeynet Project, “Know your Enemy”, 2
nd

edition,
Addison-Wesley Profeesional, May 2004.

 14

[34] M. Wawrzoniak, L. Peterson, and T. Roscoe, Sophia:
An Information Plane for Networked Systems, ACM
SIGCOMM (HOTNETS-II) Proc. 2nd Workshop on Hot
Topics in Networks, 2004, 15-20.

[35] J. Kopena and B. Loo, OntoNet: Scalable Knowledge-
Based Networking, 4th Workshop on Networking Meets
Databases, 2008.

[36] Y. Mao, B. Loo, Z. Ives, and J. Smith, The Case for a
Unified Extensible Data-Centric Mobility Infrastructure,
ACM SIGCOMM International Workshop on Mobility in the
Evolving Internet Architecture, 2007.

[37] W. Zhou, E. Cronin, and B. Loo, Provenance-aware
Secure Networks, 4th Workshop on Networking Meets
Databases, 2008.

[38] H. V. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T.
Anderson, A. Krishnamurthy, and A. Venkatramani, iPlane:
An Information Plane for Distributed Services, USENIX
(OSDI) Proc. Symposium on Operating Systems Design and
Implementation, 2006.

[39] Y. He, G. Siganos, M. Faloutsos, and S Krishnamurthy,
A Systematic Framework for Unearthing the Missing Links:
Measurements and Impact, Symposium on Networked
Systems Design and Implementation, April 2007.

[40] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers,
and J. Rexford, A Clean Slate {4D} Approach to Network
Control and Management, ACM SIGCOMM Computer
Communications Review, 35(5), 2005.

[41] N. Dulay, E. Lupu, M. Sloman, and N. Damianou, A
Policy Deployment Model for the Ponder Language, IEEE
International Symposium on Integrated Network
Management, 2001.

[42] L. L. Peterson, N.C. Buchholz, and R. D. Schlichting,
Preserving and Using Context Information in Interprocess
communication. ACM Trans. Comput. Syst. 7, 3 (Aug.
1989), 217-246.

[43] K. Birman, and T. Joseph, Exploiting Virtual Synchrony
in Distributed Systems. SIGOPS Oper. Syst. Rev. 21, 5 (Nov.
1987), 123-138.

[44] J. Stewart, Storm Worm DDoS Attack, SecureWorks
Research, available at
http://www.secureworks.com/research/threats/storm-worm

[45] J. Mirkovic, M. Robinson, P. Reiher, and G. Kuenning,
Alliance Formation for DDoS Defense, Proceedings of the
New Security Paradigms Workshop, ACM SIGSAC, August
2003.

[46] G. Oikonomou, J. Mirkovic, P. Reiher and M. Robinson,
A Framework for Collaborative DDoS Defense, Proceedings
of ACSAC 2006, December 2006.

[47] M. Natu and J. Mirkovic, Fine-Grained Capabilities for
Flooding DDoS Defense Using Client Reputations,
Proceedings of the Large-Scale Attack and Defense
Workshop, August 2007.

[48] M. Mehta, K. Thapar, G. Oikonomou and J. Mirkovic,
"Combining Speak-up with DefCOM for Improved DDoS
Defense", Proceedings of ICC 2008.

[49] J. Li, D. Lim, K. Sollins. The 16th USENIX Security
Symposium, DETER Community Workshop on Cyber
Security Experimentation and Test 2007, Boston, MA,
August 6-7, 2007.

[50] V. Paxson, Bro: A System for Detecting Network
Intruders in Real-Time, Computer Networks, 31(2324), pp.
2435-2463, 14 Dec. 1999.

[51] J. Lepreau, R. Ricci, L. Stoller, M. Hibler, "Federation
of Emulabs and Relevant New Development," Presentation at
the USC/ISI Federation Workshop, December 2006.
http://www.cs.utah.edu/flux/testbed-docs/emulab-fed-issues-
dec06.pdf

[52] R. Ricci, J. Lepreau, L. Stoller, M. Hibler, "Emulab
Federation Preliminary Design," Presentation at the USC/ISI
Federation Workshop, December 2006.
http://www.cs.utah.edu/flux/testbeddocs/emulab-fed-design-
dec06.pdf

[53] J. Lepreau, "The Utah ProtoGENI Project," Presentation
at the 1st GENI Engineering Conference, October 2007.
http://www.geni.net/docs/Utah_ProtoGENI.pdf

[54] http://www.planet-lab.org/federation

[55] PlanetLab/OneLab Consortium, "Federation Roadmap",
Draft White Paper,
http://www.cs.princeton.edu/~llp/federation-roadmap.pdf

[56] I. Foster, C. Kesselman, "Globus: A Metacomputing
Infrastructure Toolkit," International Journal of
Supercomputing Applications, vol. 11, pp. 115-128, 1997.

[57] "Web Services Federation Language (WS-Federation)",
December 2006.
http://specs.xmlsoap.org/ws/2006/12/federation/

[58] OASIS Standard, "WS-Trust 1.3", March 2007
http://docs.oasis-open.org/ws-sx/ws-trust/200512

[59] W3C Member Submission "Web Services Policy 1.2 -
Framework", 25 April 2006.
http://www.w3.org/Submission/2006/SUBM-WS-Policy-
20060425/

[60] OASIS Standard, "WS-SecurityPolicy 1.2", July 2007.
http://docs.oasis-open.org/ws-sx/wssecuritypolicy/200702

